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Abstract 

The Artin groups of FC type can be characterized as the smallest class of Artin groups 
which is closed under free products amalgamated over special subgroups (subgroups generated 
by a subset of canonical generators) and which contains the finite-type Artin groups. There is a 
computationally feasible normal form for special cosets of FC-type Artin groups. In particular, 
the word problem is solvable in quadratic time. It is also shown that FC-type Artin groups are 
asynchronously automatic and that the set of positive words in a standard presentation of an 
Artin group of FC type is isomorphic to the monoid given by the same presentation. @ 1998 
Elsevier Science B.V. All rights reserved. 

1991 Math. Subj. Class.: 20F36, 20FlO 

0. Introduction 

Artin groups are a natural generalization of braid groups. Braid groups can be thought 

of as encoding all the patterns that can be woven into a set of (almost) parallel strands. 

Artin found a presentation for each braid group as a finite system of generators and 

relations and solved the word problem [l]; i.e., he gave an algorithm which decides 

whether a given product of generators is the identity element of the group. The braid 

groups have been well studied since then and are of continuing interest. They have 

applications to the study of knots and links and are related to the mapping class groups. 

The braid groups are contained in a larger class of Artin groups known as the finite- 

type Artin groups. Many of the properties of braid groups extend naturally to finite-type 

Artin groups. Garside [lo] and Deligne [8] solved the word problem for finite-type 

Artin groups. Thurston [9] showed that braid groups are biautomatic. Biautomaticity 

implies, among other things, that the word problem can be solved in quadratic time. 

Chamey [4] showed that the finite-type Artin groups are biautomatic. The Artin groups 
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of infinite-type are not amenable to the same techniques and very little is known about 

them. Peifer has shown that some of the infinite-type Artin groups have solvable word 

problem, more specifically, that those of large type are automatic [13] and that those 

of extra-large type are biautomatic [14]. Chermak has shown that locally non-spherical 

Artin groups have solvable word problem [7]. Van Wyk [ 171 has shown that the 

right-angled Artin groups are biautomatic and it follows from work of Hermiller and 

Meier [l l] that, in fact, any graph product of biautomatic Artin groups is a biautomatic 

Artin group. 

What follows is a solution to the word problem for another class of infinite-type Artin 

groups, Artin groups of FC type. This class is defined by Charney and Davis [6] as 

follows. Let ( W,S) be a Coxeter system. The associated Artin group A is of FC type if 

the following condition is satisfied: if T 2 S and every pair of elements of T generates 

a finite subgroup of W, then T generates a finite subgroup of W. The Artin groups of 

FC type can be characterized as the smallest class of Artin groups closed under amalga- 

mations over special subgroups and containing the finite-type Artin groups. This class 

contains graph products of finite-type At-tin groups (and hence the right-angled Artin 

groups) but is essentially different from the locally non-spherical and large type Artin 

groups. The solution is via a normal form which yields an asynchronously automatic 

structure. It is not known, in general, whether asynchronously automatic groups admit 

a polynomial-time solution to the word problem. The normal form presented below 

has computational properties which are independent of the generic algorithms associ- 

ated with automaticity. These properties yield a quadratic time solution to the word 

problem. 

Section 1 provides background on Artin groups collected principally from papers 

of Chamey [4,5] and Charney and Davis [6]. Section 2 gives the core result: Artin 

groups of finite type have a system of special coset representatives analogous to mini- 

mal coset representatives of Coxeter groups. The representatives of the trivial subgroup 

reconstitute the geodesic normal form in [5]. The coset representatives of those special 

subgroups containing positive elements coincide with those defined in [6], which were 

the inspiration for the generalization given here. Section 3 extends the normal form 

for coset representatives to FC-type Artin groups. In this case, the representatives of 

the cosets of the trivial subgroup do not give a biautomatic structure but they do yield 

a normal form which can be computed in quadratic time. The normal form is used to 

show the following two facts: (a) the monoid defined by the same generators and rela- 

tions as in the standard presentation for an FC-type Artin group is exactly the monoid of 

positive elements of that group and (b) FC Artin groups are asynchronously automatic. 

1. Finite-type Artin groups 

This section contains preliminary information about finite-type Artin groups due pri- 

marily to Garside [lo] and Deligne [8]. It uses facts about Coxeter groups that can be 

found in the first two chapters of [3]. For more details, see [4-61. 
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A Coxeter matrix is a symmetric matrix (my) with entries in { 1,2,. . . , CXI} such 

that mii = 1 and rno 2 2, for i # j. A Coxeter system associated to an n x n Coxeter 

matrix is a pair (W,S), where S = {si,sz,. . . , s,} is a finite set and W is the group 

with presentation 

W = (S 1 (SiSj)m” = 1, rng # c0). 

The corresponding Artin group A is the group with presentation 

A = (S 1 prod(si,sj; mu) =prod(sj,si; mq)), 

where prod(s, t; m) denotes the alternating product sts . . . containing m factors. If W is 

finite, A is said to be of jinite type. For example, the braid group on n strands, B,, is 

an Artin group whose standard presentation is 

& = (Sl ,...,S,_l ISiSi+lSi=Si+lSiSi+l, SiSj=SjSi if Ii - jl > 1). 

Braid groups are of finite type since the Coxeter group W corresponding to B, is S,,, 

the symmetric group on n objects. Note that in the presence of the relations s’ = 1, 

the Artin group relations are equivalent to the corresponding Coxeter group relations. 

In other words, there is a homomorphism rr : A 4 W given by adding the relations 

s?=l. 

For T C S, let (W,, T) denote the Coxeter system corresponding to the T x T sub- 

matrix of the Coxeter matrix for W. Let AT denote the Artin group corresponding to 

WT. It follows from Tits’ solution to the word problem in Coxeter groups that WT 

is isomorphic to the subgroup of W generated by T under the natural map. This is 

also true for Artin groups; i.e., AT is isomorphic to the subgroup of A generated by T 
under the natural map. This was shown by Deligne [8] for A of finite-type and by 

van der Lek [16] in general. The groups WT and AT are called the special subgroups 
of W and A, respectively. Cosets of special subgroups are called special cosets. Special 

subgroups satisfy a nice intersection property [ 161: AT f? AU = AT” u. 
For the rest of this section, suppose W is finite and A is the associated finite-type 

Artin group. Let A+ be the monoid with the same presentation as A; i.e., A+= F(S)+/-, 
where F(S)+ is the free monoid on S and N is the equivalence relation gener- 

ated (via transitive closure) by the equivalences uwu - UW’V if w = prod(s, t; m,,) and 

W’ =prod(t,s; m,,), for some s, t E S. Note that since the monoid relations preserve 

length, word length is additive in A +. Deligne [8, Theorem 4.141 has shown that the 

natural map A+ + A is an injection. Thus, A+ may be regarded as a submonoid of A, 
called the monoid of positive elements. 

To each element w of the Coxeter group W, there is a unique positive element 

p E A+ of minimal length such that rc(p) = W. If p # 1, we call /J a minimal. The 

set of minimals is denoted by M. Since SCM, M is another finite generating set 

for A. The word length of an element a E A over the generating set M will be called 

the M-length of A, denoted IaIM; similarly, the word length over S will be called S- 

length, denoted lals. The generating set M is easier to work with for some purposes. 
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For example, Paterson and Razborov [ 121 have shown that unless P = NP, there is no 

polynomial-time algorithm independent of the number of strands to produce a minimal 

length representation of a braid from a given one in the generators S. However, there 

is such an algorithm over the generating set M [9, Corollary 9.5.31. For T G S, let Mr 

be the set of minimals in Ar. 

Lemma 1 (Chamey [4, Lemma 2.31). Let A be the minimal corresponding to the 
(unique) longest element of W. For all a E A, p EM, and s E S, 

(i) A2a = aA2, 

(ii) there is p* E A4 such that A = ,u*p, 
(iii) there is ,ii EM such that Ap = ,iiA, and 
(iv) there is SE S such that As = fA. 

For T C S, let AT denote the minimal corresponding to the longest element of WT. 
Define the partial orderings & and 5, on A+ by 

a5,b if b=ca for some CEA+ 

and 

ad/b if b=ac for some CEA+. 

A lattice is a partially ordered set (poset) in which each pair of elements has both 

an infimum and a supremum. The infimum of x and y is denoted by x A y and is 

called the meet of x and y; the supremum is denoted by x V y and is called the join. 
Chamey and Davis [6, Lemma 4.5.21 show that the posets (A+, -&) and (A’, 3,) are 

lattices. The operations in these lattices will be denoted Ap, Vp and A,, V,, respectively. 

For a, b E A+, the statement a A, b = 1 will sometimes be abbreviated to a I, b, for 

* = e or r. For any T C S and any p E A+, the following statements are equivalent: 

(a) PEMT; (b) PIGAT; CC> PSAT. 

For any a E A+, the sets 

{pEEMU( p&a) 

and 

{pEMU{l}: p$a} 

have unique maximal elements denoted maxmine and maxmin,(a), respectively, [8]. 

We can put any p E A+ into a normal form over M by letting p1 = maxmin,(p), 

p2 =maxmin,(pp;‘), p3 =maxmin,(pp;‘p;‘), and so on until pk+r = 1 and writing 

p=pk"'P2p1. This normal form for positive elements is called the right greedy 
canonical minimal decomposition (rmd). A left normal form (lmd) can be defined 

similarly and symmetric versions of the following properties of rmds hold for lmds. 

The following lemma is a fundamental rmd property [4, Lemma 2.41. 

Lemma 2. For a, b E A+, maxmin,(ab) = maxmin,(maxmin,(a)b). 



J.A. Altobellil Journal of Pure and Applied Algebra I29 (1998) 1-22 5 

b Il.1 br., “2 b, 

4 b 
m.1 

Fig. 1. Multiplying rmds by a minimal. 

It follows from Lemma 2 that (a) a word pk.. . p2p1 over M is an rmd if and 

only if pi = maxmin,(pi+i pi) for i = 1,2,. . . , k - 1 and (b) the language of rmds is a 

regular language over M. 

The following lemmas describe what happens to orthogonal elements [5, Lemma 2.81 

and rmds [5, Lemma 3.11 after multiplication by a single minimal (Fig. 1). 

Lemma 3. Let a,bEA+, oEM. Ifa-!-,b then mA,bEMlJ{l}. 

Lemma 4. Let a, b E A+ have rmds a=a,a,_l ... al and b= b,b,,_l . . . bl and let 
p EM. Then 

(i) if b = ap then n = m or m + 1 and there are Ciy Q EM U { 1) such that ai = cidi 
and bi = diei-1, where d,+l = 1 and CO = ,u; and 

(ii) if b = pa then n = m or m + 1 and there are Ci E M U { 1) such that b, b,_l . . . 

bici_1 = pa, . . . ai. 

It follows that if LI & b then ICI/M 5 IblM, for * = r or 8. By Lemma 1, it is possible 

to write each a E A as a = pAek for some p E A+ and some k > 0. After cancelling as 

much as possible between the positive and negative parts, the form ab-’ is obtained 

with a, b E A+ such that a I, b. This form will be called the right normal form or rf: 
If a and b are written as rmds, the result is a normal form over M UM-’ for elements 

of A. This normal form will also be called rnf when it is clear that we are considering 

words rather than groups elements. Charney [5] has shown that the language of mfs 

is a biautomatic geodesic normal form with uniqueness. 
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Let T C S. For n 2 1, AT = maxmind”, and so A; is an rmd. Also, every positive 

element of AT preceeds A; for sufficiently large n under both partial orderings & 

and 5,. Consequently, certain expressions involving powers of AT become stable for 

sufficiently large powers. For example, in Lemma 6 it is shown that if T C S, a, b E A+, 
and E(n) denotes the expression a A,. Atb, then E(n) =E( I&) for all n > I&. 

Definition 1. Suppose that for each integer n, E(n) is an expression over elements 

of A, products, powers, and lattice operations. Suppose there is an integer N such that 

for all n 2 N, E(n) = E(N). Then the set {a E N : n > N} is called the stable range 

of E(n). 

The following lemmas give bounds for the stable ranges of some eventually stable 

expressions. 

Lemma 5. Let T GS. Let b,cE A+ with k= 1~1~. If A;b krc for some n E N, then 
Ak,b k, c. 

Proof. This is clearly true if k 2 n so suppose otherwise. Let c = ckck_1 . . . cl (rmd). 

The proof is by induction on k. For k = 1, c = cl E h4 implies 

cl 5, maxmin,(A”,b) = maxmin,(maxmin,(A~)b) = maxmin,(Arb). 

Thus, cd, ATb. Fork > 1, cd, A”,b implies c&i “-cl 5, A”,b so A~-lb?rck_l “‘~1 
by induction. Thus, Ak,-‘b = blck_1 . . . cl, for some bl E A+. Since c -& A”,b, A”,b = bzc, 
for some 62 E A+. Thus, 

b2C&_l---cl =A”,b=A”,-k+lAk,-lb=A;-kATblck--l . ..cI. 

Cancelling ck-_l . . . cl gives ck & Arek+’ bl. As in the k = 1 case, this implies ck 3, 

ATbl. Thus, for some b3 E A+, 

Ak,b= ATA$lb=ATblck_, “‘cl =~~C,IJ_~. .‘Cl. 0 

Lemma 6. Let T C S and a, b E A+. Then la[M is in the stable range of a A, A”,b. 

Proof. Let c =a& A”,b. Then c&a so 1~1~ 5 IaIM. By Lemma 5, c & AFlwb 5, 

AFlwb. Hence 9 c dr a A AFIM b. On the other hand, if n 2 la[M then a A Akl”b 5, c. 0 

The notation and terminology of [9] for dealing with normal forms will be used 

when it is necessary to more carefully distinguish between groups elements and words 

over a generating set. For any finite generating set X of a group G, let X-’ denote 

a set disjoint from X of formal inverses of the elements of X. Let X*-’ =X UX-‘. 
Let X** =(X UX-‘)* denote the free monoid of finite sequences or words over X*‘. 

If Y 2X, Y** is a submonoid of X**. The sequence of length zero is called the 

empty word and is denoted by a. There is a natural monoid epimorphism from X** 
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to G. If w is a word in X**, let w denote the image of w under this natural monoid 

epimorphism. 

For a, b EM*, say a I,. b if aI_, b and let a A, b be the word corresponding to the 

rmd of a A,b. Extend Ip and Ap similarly. These lattice operations on words can be 

computed in quadratic time. 

Lemma 7. I;or a, b E M*, the lattice operations a me b and a A, b can be computed in 

O((lalM + lblM)*) time. 

Proof. It suffices to show this for A, since the argument for r\p is symmetric. Let 

a=amam_l .. . al. By Lemma 2, maxmin,(a) can be found by reading a from left 

to right in pairs: a,a,_l is replaced by aLak_1 (rmd), ak_lam_2 is replaced by 

aG_1ak-2 (rmd), and so on, where the first factor in a replacement pair may be 1. 

Then maxmin,a = a;. Similarly compute maxmin,b. Set cl = maxmin,a A, maxminb. 

(There are finitely many possible meets of minimals which may be considered to have 

been computed in advance.) Compute maxmin,.(ac~‘) by replacing a{ by a\c,’ in 

the stnng ai. .. aya{ and processing the string from left to right as before. Compute 

maxmin,(bc~‘) similarly and set c2 = maxmin,(ac,‘) A, maxmin,(bc,‘). Repeat until 

ck+l= 1. Then aA,b=ckck_-l ... cl, with k 5 min(la]w, IbjM). Thus, a A,. b is calcu- 

lated in 2(k + 1) passes of length at most max(la/M, lb/M). q 

The following lemma provides nice coset representatives for special cosets containing 

positive elements [6, Lemma 4.5.31. It will be generalized in the following section. 

Lemma 8. Let a E A and T C S. If aAT n A+ # 0 then it contains a least element with 
respect to 5~. 

2. Finite-type minimal coset representatives 

Any Artin group of FC type can be written as a free product with amalgamation 

whose factors are (ultimately) finite-type Artin groups. The standard normal form for 

elements of an amalgamated product requires sets of coset representatives in the factor 

groups. This section describes a good set of coset representatives for finite-type Artin 

groups. (The amalgam normal form is described in the next section.) 

Let ( W, S) be a Coxeter system with W finite and let A be the corresponding (finite- 

type) Artin group. Each special coset of W has a unique coset representative of min- 

imimal length over S (see [3]). There is an analogous system of distinguished coset 

representatives for A. However, length over the generating set M does not provide 

unique special coset representatives for A. A stronger partial ordering on A is needed. 

Such a partial ordering is defined below as a lexicographic combination of the partial 

orderings on A+ discussed in the previous chapter. Its main properties are summarized 

in the following theorem. 
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Theorem 1. There is a partial ordering 58 on A such that 

(i) every special coset XAT has a least element m(xAT) with respect to do, 

(ii) m(xAT) has minimal M-length among coset representatives, and 

(iii) ifAu is a special subgroup such that Au flxA~#@ then m(A” flxA~)=rn(XAT). 

It follows from van der Lek’s intersection property (AU n AT=Au”T) that if AU f3xA~ 

is nonempty then AU flxA~ is a coset of the special subgroup A~“T. Thus, assuming 

property (i), the expression m(Au f-IX&-) in property (iii) is well-defined. Property 

(iii) implies that m(xAT) lies in every nonempty intersection of the form AU ~IXAT 

and hence can be written in terms of the smallest subset of canonical generators suI& 

cient to express some element of XAT. 

Let x E A and T C S. Let x= ab-’ (rnf). Define mr(x) by 

I?zr(X) =xA;m(dyb(a A, Ayb)-’ At A”,), 

where m is in the stable range of E(i) = a A, A’,b and n is in the stable range of 

F(j) = b(a A, Ayb)-’ A[ A$. This definition can be understood as an algorithm for 

finding a distinguished representative mr(x) for the coset XAT. This algorithm is out- 

lined by the following system of equations, which also yields n@(x): 

g=aA, Ayb, 

al = ag-‘, 

bl = A$‘bg-‘, 

(1) 

(2) 

(3) 

h=bl &A”,, 

bZ=h-‘bl, 

mT(x)=alb;‘, 

(4) 

(5) 

(6) 

where m is in the stable range of g and n is in the stable range of h. For example, 

consider the element x = Apyl of the braid group Bq, where T = {q, ~2). As a product 

of minimals, ATS~ -I is in mf; no cancellation can occur between the positive and 

negative part. The goal is to find a representative of the coset XAT whose positive part 

is as “small” as possible. Multiplication on the right by A;’ induces some cancellation: 

xA,‘= SlWlS3 S1 -’ -‘S~‘S~l =S1S2S1S~1S31S~1S~1 =(S1,!Q)(S1.QS3)-‘. 

However, another factor of A;’ yields no further cancellation; m = 1 is in the sta- 

ble range of g. We have al =sis2 and bl =qs2s3. Having reduced the positive part, 

we let AT reabsorb as much of the negative part as possible: h = ~1~2, b2 = ST’, and 

mr(x) =srs2s;1. 

Remark 1. By Lemma 6, m = JalM is in the stable range of g. Thus, lb1 1~ 5 lalM+lblw 

and n = jalw + Jbl M is in the stable range of h. However, an efficient calculation could 



J.A. Altobellii Journal of Pure and Applied Algebra 129 (1998) 1-22 9 

use the minimal number of Ap (plus one to check the termination condition) by taking 

advantage of the fact that maxmin,( A”,b) = maxmin,( AI-~). For example, to compute 

g, proceed as in the proof of Lemma 7 to find ci = maxmin,(a A, ATb). In the next 

pass, use dTb’ in place of b’, the replacement string for drb. Continue by multiplying 

by one AT at a time. 

Remark 2. Note that mr(X) EXAr since by definition, MT(X) =xk, where k de A”,. 

Remark 3. The elements al, bl, and hence mr(x) do not depend on the orthogonality 

of a and b since any common right tail will be absorbed by g. Thus, mr(n) can be 

calculated from any pair a, b E At such that x = ab-‘. 

In fact, IT does not really depend on x but only on the coset XAT. 

Lemma 9. If y EXAT then mu = IT. 

Proof. Let y ExAT. Then y =XVV for some w EAT. Write w = eAFd and x =cAek, 

where eEA$, CEA+, and k and G are even. Then y =ceAhkA;‘. By Remark 3, 

MT(X) can be computed by letting a =c and b= Aek in Eqs. (l)-(6): 

g=cA, A;Ak, 

al = cg-‘, 

b, = A;Akg-‘, 

(7) 

(8) 

(9) 

h=bl/‘ieA;, 

bZ = h-lb,, 

I?IT(X)=alb;‘, 

(10) 

(11) 

(12) 

where 172 is even and into the stable range of c A, ATAk by at least the length of e. 

Similarly, mr(y) can be computed by ietting a’ = ce and b’ = A$.Ak: 

g’ = ce A, A; A$ Ak 

= (c A, AyA$-Ake-‘)e 

=(~r\~e*A~-~A$d~)e 

= (c A, A’;t-‘A$Ak)e 

= ge, 

(13) 

(14) 

(15) 

(16) 

(17) 

where i is the length of e and * is with respect to AT. In going from (15) to (16) the 

required fact is that since e* GA;, any bounded (by c in this case) right tail of e*AyAk 
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is also a bounded right tail of AyAk for sufficiently large h4 while the converse is 

obvious. 

a; = a’g’-i = ce&?-1 = cg-1 = ai, (18) 

b; = A’;lb’g’-’ 

= AyA;Ak(ge)-’ 

= A~A;e-‘Akg-’ 

= J!w-‘Akg-’ 

=w -’ Wkg-’ 
=w -lb,, 

, 
h’=b;r\cA”, 

= w-lb1 Ae A$ 

= w-‘(bl A\c WA”;) 

=w -‘(bl A[ A$w) 

= w-‘(bl A~ A$) 

= w-‘h, 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

b; = A’-$‘, =(w-‘A)-‘w-‘b, 

= h-lb, = bZ 

~&)=a$-’ =alb,’ =m&). 

(31) 

(32) 

(33) 

0 

Remark 4. Note that the above proof shows that al and bz themselves only depend on 

the coset XAT. In fact, since ai &a for any a EA+ such that m&)=ab-’ for some 

b E A+, al b,’ is the rnf of W(X). 

By Remark 2 and Lemma 9, there is a way of choosing a distinguished representative 

m(xA~) from each special coset XAT, namely, m(nA~)= m~fx). Each distinguished 

representative is the least element in its coset with respect to the partial ordering on A 
described below. 

Let (X, <) be a poset, Y CX. An element yo E Y is minimal in Y if for every y E Y, 

y 4 yo implies y = ye. If Y contains an element yo such that yo + y for all y E Y, 

say that Y has a least element and call ya the least element of Y. Least elements 

are unique by antisymmetry. Least elements are minimal but minimal elements are not 

always least. However, if Y has a least element ys, then ya is the unique minimal 

element of Y. 



J.A. AItobellilJournal of Pure and Applied Algebra I29 (1998) 1-22 11 

Define the partial ordering 5 on (A+ x A+) lexicographically from the posets (A+, 

5~) and (A+, 5,); i.e., (at,br ) 3 (a~,&) if and only if (al & u2 and al # a~) or 

(at = u2 and bt 5, b2). Since each element x of A has a unique mf, this induces a partial 

ordering 3~ on A. Define p : A + A+ x A+ by p(x) = (a, b), where x = ab-’ (mf). Then 

p(A) = {(a, b) E A+ x A +:aI,b} and p-t :p(A)+A is given by p-‘(a,b)=ab-‘. For 

x, y E A, say that x iR y if p(x) 5 p(y). Let x E.4 and T C S. Let x = ab-’ (mf). Let 

P={pfA+:qq~A+, (p,q)Ep(xAT)}. For each PEP, let &,={qEA+:(p,q)f 

p(xA~)}. Then for each PEP, Qp #S. Using the notation of Eqs. (l)-(6), it fol- 

lows from Remark 4 and the definition of al that for any y EXAT, if y =pq-1 with 

p, q E A+ then al 5p p. Thus, P has least element al with respect to 5~. Similarly, b2 
is the least element with respect to sp of Qa,. It follows that m(xAr)=alb;’ is the 

least element with respect to & of XAT = p-‘( UpEp {p} x Q,). This completes the 

proof of part (i) of Theorem 1. 

To prove part (ii) of Theorem 1, it suffices to show that for any y EXAT, if y = ab-’ 

with a,b E A+, then, using the notation of Eqs. (l)-(6), Ial 1~ 5 lal~ and lb& < IblM. 
That la, IM 5 lal~ is clear from the definition of at. The following lemmas are used to 

prove the second inequality. 

Lemma 10. Suppose T CS, CEA+, c=yly2 .. . yk (rmd), and n 2 0. Then A”,c= 
6162...&,,y{y~..-y~ (rmd) for some y{,yi,..., $EM and 61,62,...,&,5rAr with 
O<min. 

Proof. Lemma 4(ii) and induction. 0 

Lemma 11. Let T cS. For any a E A+ with rmd a = a,. .. ~12~1, let k(u) denote the 

smallest integer such that Uj $ AT for k(a) <j I n. Then for all b,g E A+, 
k(b) 5 k(bg). 

Proof. This proof is by induction on IglM. For lglw = 0, b = bg so k(b) = k(bg). Sup- 

pose the lemma is true for \glM < m. Let b,g E A+, with g= yrn.. y2y1 (rmd). Let 

b’ = by,, ’ . . y2 and suppose that the rmd of b’ is b’ = /& . . . p2fil. Then by Lemma 4(i), 

there are elements (TO, 01,. . . , on and aI,az,. . . , a,+1 of M U { 1) such that /& = aiai and 

the rmd of b’yl is qj. .. ~2~1 with j= n or j=n + 1 and vi = alcTi--l (where a,+1 = 1 

and 00 = yt ). Let k = k(b’). Since fik -& AT, either 0k & AT or ak & AT. Hence either 

rk+t 5,. AT or qk &AT so k(bg) = k(b’yl) > k = k(b’). By the induction hypothesis, 

k(b’) 2 k(b) so k(bg) 2 k(b). 0 

Let b = b1 /?2 . . . fik (rmd). Then by Lemma 10, 

for some /?:,/I; ,..., PLEM, and 61,62,...,6/-&Ar. BY Lemm 11, 
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where j<k, and Sl,,Si ,..., ~5: 3, AT. Since n is in the stable range of h= bl A[ A”,, 
n > t. Thus, 8: . . . S$j{ -& h and hence bz = h-lb1 3, $‘. . . By$‘. This gives lbz[M <j < 
k = lb[M, which is the desired inequality. 

Suppose (X, -&) is a poset with least element ~0. If Y CX and x0 E Y then ~0 is 

the least element of Y. Thus part (iii) is a consequence of part (i) and the following 

lemma. 

Lemma 12. ZfAo rlxAr#@ then m(xAr)~A~. 

Proof. Suppose y EAU flxAr. Then by Lemma 9, m(xAr)=mr(~~). Write y=ab-‘. 

Then a,b EAR. Using the notation of Eqs. (l)-(6), since ai &a, ai E A$. Since 

m(xAr)=mr(y)=alb,‘, it suffices to show bZ E A&. Since bl = Aybgg’ E AyAo nA+, 
the intersection is nonempty. Therefore, there is a least element do with respect to 5~ of 

AyAo (Lemma 8). Thus, bl E doA$ so bl = doe for some e E A$. Since do lie A’;! & A$ 
h = bl Ap A’+ = doe At do(dr' A”,) = do f, where f = e Al di’ A”, & e. Thus, b2 = 
h-lb1 =f-‘di’doe=f-leEA=. 0 

Proposition 1. The language Lr of minimal coset representatives of AT in a &rite- 
type Artin group A is regular. 

We note some facts about regular languages. The details can be found in [9]. Let 

K and L be regular languages over an alphabet M. Then M’ - K, K n L, KU L, 
and the concatenation KL = {kl EM* : k E K, I EL} are regular. Let Lo = {E}, and let 

L”=LL”-‘, for n=l 2 ) ).... The Kleene closure of L is L* = U,“=, L”. It is not hard 

to see that L* is regular if L is. Note that L* contains the empty word even if L does 

not. Note also that the Kleene closure M* of the finite language M in the monoid 

of words M* generated by the alphabet A4 is exactly M* so the notations agree. De- 

fine the reverse of a word w = nl,p~,. . .,pn to be rev(w) = pn,,p+l,. . . ,pl, the word 

spelled backwards. Then the reverse rev(L) = {rev(w): w E L} of a regular language 

L is regular. Thus if M-* is a set of formal inverses of M, the formal inverse L-’ 
of a regular language L over M is a regular language over M-l. (Replace each la- 

bel p EM of an arrow of the FSA for rev(L) with the label p-’ to get an FSA 

for L-l.) 
Let R be the set of words over M representing right greedy minimal decompo- 

sitions. Let L1 = {ab-’ ERR’ :al,b}. It is shown in [5] that R and L1 are reg- 

ular and that in fact, L1 gives a biautomatic structure with uniqueness for A. Let 

Lr = {w E L1 : W = m(GAr)}. By Theorem 1, Lr is in one-to-one correspondence with 

the left cosets of AT in A; i.e., Lr is a normal form with uniqueness for A/AT. 

Proof of Proposition 1. Let Li = {abb’ ERR’ : a I, ATb} and Li = {ab-’ E RR-’ : 

b&h). 

Claim. LT = Li n Li. 
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Proof. Suppose ab-’ E LT. By the uniqueness property of L1 and Remark 4, a=al 
and b= bZ in the notation of Eqs. (l)-(6). Thus, by Eqs. (l)-(6), aI, A’;tb hence 

. . 
a I, Arb. Similarly, b I/ A”, hence bit AT. Thus ab-’ E Li n Li. For the converse, 

we need the fact that for any a, b EM*, if a I, Arb then a I, AFb for all m = 1,2,. . .; 

and if a if bAT then ale bd”, for all 12 = 1,2,. . . . This follows from Lemma 2 and 

induction. Now suppose ab-’ E Li fl LG. Then applying Eqs. (l)-(5) and using the 

above fact we find that al = a and b2 = b. Thus, by Remark 4, ab-’ E L1 and by 

Eq. (6), m(ab-‘AT) = ab-I. Thus ab-’ E LT. 0 

Let LZ={ab-1 :a,bEM*, alal I, maxmin,(Arb)} and L3 = {ab-’ : a, b EM’, 

maxmine le AT}. For any a, b EM*, a I, b iff maxmin,(a) I, maxmin,(b), and 

ale b iff maxmin/(a) le maxmine( If a E R, then alal =maxmin,.(a). Thus, LI 
=RR-’ n Li, for i = 2 or 3. It follows that LT = LI n L2 n L3 so it suffices to show that 

L2 and L3 are regular. 

For w EM*, let Wi denote the ith letter in W. Define wo to be 1. Then WI,,, is 

the last letter of w if (WI > 0 and WI,,,] = 1 if w = E. For each p EMU {l}, define 

$ = {w EM* : wIwI = p}. 

Claim. ED is regular for each ,LI EM. 

Proof. Construct an FSA with states M U {l}, with start state 1, p the only accept 

state, and for each v EM, an edge labelled v from s to v for each state s. The language 

of this FSA is Efl. 0 

Claim. For each v EM, define F, = {w EM* : v = maxmin,.( ATw)}. F, is regular for 

each v E M. 

Proof. Construct an FSA with states M, start state AT, accept state v, and for each 

[, rl E M, an edge labelled q from [ to maxnun,( The language of this FSA is F,. cl 

Since L2 = U p I, y EpFV-‘, the above claims imply that L2 is regular. 

Let .!3 be the FSA with states M U { l}, start state 1, accept states { 1) U {p EM : p IL 

AT}, and for each state s, an edge labelled v from s to maxmine( Then the language 

of g is B = {b EM* : maxmine(rev(b)) -Lp AT}. Thus, rev B = {rev(b) EM* : maxmint 

(rev(b)) 1~ dr} = {b EM* : maxmine I[ AT}. Therefore, L3 = M*(revB)-’ is regu- 

lar. This completes the proof of the proposition. 0 

3. FC-type minimal coset representatives 

We now define a normal form for special cosets of those Artin groups which 

can be built from finite-type Artin groups by amalgamating over special subgroups. 

As explained below, these are exactly the Artin groups of FC type. The normal form 

for FC-type Artin groups generalizes the normal form given above for finite-type Artin 



14 J.A. AltobellilJournal of Pure and Applied Algebra 129 (1998) 1-22 

groups. The restriction to cosets of the trivial subgroup gives a solution to the word 

problem for At-tin groups of FC type. 

Let A be an At-tin group with canonical generating set S and associated Coxeter 

group W. The Artin group A is of FC type if condition (a) below is satisfied. Let the 

class of iterated special amalgams (ISA) be the smallest class of Artin groups which 

is closed under free products amalgamated over special subgroups and which contains 

the finite-type Artin groups. As observed by Davis, the class ISA is exactly the class 

of FC-type Artin groups. 

Proposition 2. Let A be an Artin group with canonical presentation (SIR) and asso- 
ciated Coxeter group W Then the following are equivalent: 

(a) rf T G S and every pair of elements of T generates a finite subgroup of W, 
then T generates a finite subgroup of W 

(b) A is an iterated special amalgam (ISA) of finite-type Artin groups. 

Proof. If A satisfies (a), then either A is of finite type, in which case it clearly satisfies 

(b), or there are distinct elements s and t of S which generate an infinite subgroup 

of W. Let AJ provisionally denote the subgroup of A generated by S - J. Then A is 

the amalgamated product of A{,) and A{,) along A{,,). Continue in this way until A 
has been decomposed into a nested product of finite-type groups. For (b) implies (a), 

consider that a special amalgam of two groups satisfying (a) will still satisfy (a) since 

if T is any subset of generators in the amalgam in which every pair generates a finite 

subgroup of W, then T must be entirely contained in one of the factor groups and so 

generates a finite subgroup of its Coxeter group which in turn is a subgroup of W. 0 

3. I. Dejkition and properties 

Theorem 1 generalizes to FC-type Artin groups. The language of special coset repre- 

sentatives is still regular and the normal form of the distinguished coset representative 

can be calculated from any word representing any element of the coset in quadratic 

time. 

Theorem 2. Let A be an Artin group of FC type with canonical generating set S, 
associated Coxeter group W, and set of minimals M. For each T&S, there is a 
recursive function mr :Mf* +M** such that for every w EM’*, 

(i) mT(w) E WAT, 

(ii) for every v E M**, if v E KAr then mr(v) = mr(w), 

(iii) for all U c S, zfAu n ZAr # 8 then mr(w) E M,$*, 

(iv) VQ-(M+*) is a regular language over M&‘, and 

(v) mr(w) can be computed in O(lwl&) time. 

To prove this theorem, we will use the following facts about amalgamated products 

(see [15, Theorem 11). A transversal is a set of coset representatives; i.e., if G is a 
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group and H is a subgroup of G, a subset T of G is called a transversal of G/H 
(H\G) if for every x E G, there is exactly one t E T such that xH = tH (Hx = Ht). 

Theorem 3. Let G = G1 *n G2 and let Cl and C2 be transversals containing 1 of 

Gl/H and GzJH, respectively. For every x E G, there is a unique finite sequence 

(%X2 ,. . . ,~,;a) in (Cl U C2)* x H such that x=x1x2.. .x,a and (i) no xi is trivial 
and (ii) no two consecutive xi are in the same transversal. 

Let ~1x2 . . . x,,a be called the amalgam normal form of x with respect to the given 

amalgamated product decomposition of G and the given transversals. Let n be called 

the amalgam length of x with respect to the amalgamated product G = Gi *H G2 and 

denote it by Ix/,. 

Corollary 1. Let g,cE G. Let g=glg2 .. . g,a be the amalgam normal form of g and 
suppose g,, E Cl. Suppose ICI* 5 1 and let c = cl h be the normal form of c in the case 
that lc(* = 1. Then 

( 

9192.. .gngn+lb if CEG~ -H, 

gc= glg2..~gn--lg$’ if c E G1 - (g,a)-‘H, 

9192 . . . gn_lh’ zf c E (g,a)-‘H, 

where g,+l is the element of C2 such that acl = g,+la” for some a” E H, b = a”h, gk 
is the element of Cl such that gnat = g;a’ for some a’ E H, and h’ = g,ac. 

Suppose we have group presentations Gi = (Si [RI), GZ = (SzIRz), and H = (S4Rl n 
R2), where we abbreviate Si nS2 = Si2. Suppose also that for each i = 1, 2, we have (i) 

for each c E Ci a chosen word c^ E SF such that z = c and (ii) an algorithm which accepts 

any word u E ST and returns a pair (c^, h) E Ci x SF, such that U = ch. Then by the above 

corollary, there is an algorithm to put any word in (Si U&)* into an amalgam normal 

form for G. Given w E (Si U &)*, parse w into subwords w = ~1~2.. . w, such that for 

each i= l,... ,n,wiES;USf andforeachi=l,..., n-l, ifwiES; thenwi+i ES; and 

vice versa. Apply the appropriate algorithm to wi to obtain the pair (~1, vi) and replace 

the subword wi of w with uivi. If ui = 1 then uivi E ST2 so uiviw2 E ST US; and we 

can apply the other algorithm to replace uiviw2 with UZVZ. Otherwise, viw2 E SF U S$ 

so we can apply one of the algorithms to replace viw2 with 2~~2. We continue in this 

fashion until after n steps we have an amalgam normal form of length at most n. 

Proof of Theorem 2. The proof is by recursion on ISA so we first verify statements 

(i)-(v) for finite-type Artin groups. By Remark 4, the function mr defined above can 

be considered as having range M ‘*. Suppose we are given a word w EM**. Since the 

finite-type groups are biautomatic, we can write w in right normal form (mf) w = a&’ 

with a and b in their right greedy canonical decompositions (rmds) in quadratic time 

[9, Theorem 2.3.101. We must check that the operations performed on a and b to obtain 

nz~(W) can be done algorithmically in time O((la1il.l + lblM)2). Since mf is a geodesic 
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normal form, an algorithm of complexity O((lal~ + lbl~)~) will be of complexity 

O(lwl&). We check that the computations in Eqs. (l)-(6) can be done in quadratic 

time. By Remark 1 and Lemma 7, the g calculation is O((lul~ + (IaIM + lb1M))2) 

and the h calculation is 0((2(lul~ + lb[~))~). The other calculations are products in 

which the length of each factor is a linear function of IaIM + /blM. Since (M, mf) is a 

biautomatic structure, these can be done in O((l+ + lbl~)~) time. Thus, part (v) holds 

for the finite-type case and in particular, mr is a recursive fhCtiOn. Statements (i)-(iv) 

for the finite-type case now follow from Remark 1, Lemmas 1, 5, and Proposition 1, 

respectively. 

Now suppose that A = Al *A ,2 AZ, where A 1 = AT, and A2 = AT, are ISA groups and 

A12 = AT,“~~. Suppose that for i = 1,2, for each T C Ti, there is a recursive func- 

tion m(.,Ar,Ai) : kft* + k$* satisfying conditions (i)-(v) wherein S is replaced by 

E. Let S= T, u T2. We want to construct a recursive function mT(.) =m(.,AT,A): 

Mf*+M** satisfying (i)-(v) for each T C S. Let T C S. Let w EM**. The first 

step in obtaining mr(w) is to find the amalgam normal form (anf) of W. Given a 

word u gMi**, let c^ = m(u,A12,Aj) and h = m(tK’,An,Ai). By recursion hypotheses 

(i)-(iii), c^ and h are well-defined and the pair (c^,h) has the necessary properties to 

carry out the algorithm for finding anfs. By recursion hypothesis (v), each coset rep- 

resentative can be found in quadratic time. Thus, we have a recursive quadratic time 

function a : M** +M** such that for any u E M**, a(u) is the anf of 5. Let a(w) = 

WlWZ... w&z (anf). If n =0, define mT(w)=m(w,ATnT,,Al). Otherwise, suppose, 

without loss of generality, that w, E I@*. Replace w,a with WI, = m(wnu,ArnT, ,A1 ). 

If m(wA,A12,Al) # E or if 12 = 1, the process terminates. Otherwise, replace w,_twh in 

the resulting word by wk_, = m(w,_t wA,AT”T,,A~) and continue in this fashion until a 

terminating condition is encountered. The result of this process will be mr(w) = wr w2 

. ..w.& where w; = m(wL,Arnr,,,,Ai(k)) and wk@Mk* if k # 1. This is achieved after 

at most one more pass (backward) through w which is quadratic on each subword wi 

hence quadratic in the M-length of w. 

This gives us a recursive function mr which satisfies (v). It also satisfies (i) by 

(i) of the recursion hypothesis. To prove (ii), we first show that mr(w) has minimal 

amalgam length among elements of FAT. Write mr(w)=wjw2 ... wi as above. Our 

claim is certainly true if wk EMt;* since the amalgam length is zero in this case. 

So we suppose this is not the case. Suppose there is v = ulv~ . . . v, in amalgam normal 

form with VE~FAT and m < k. Then there is u=utu2 ...uec (anf) such that UEAT 
- 

and wu = 5. Consider the sequence 

and let x0,x1 , . . . ,xe be the corresponding sequence of amalgam normal forms. Since 

m < k, there must be a first place j in the sequence such that Ix&< k. Then by the 

above corollary, Xj_t= ~1~2 . * * wk-lwcb and wFbujEAl2. But ~:~=wLu~uZ...U~-~ 

so *AT =&dT. Thus, K$tr n Al2 # 8 so by condition (iii) of the recursion 

hypothesis, w: = m(wL,ATnTic,,,,Aipj) EM;* and this contradicts our assumption. 
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To prove (ii), let u,w E M** and suppose UEWAT. Then both mr(u) and mr(w) 

have minimal amalgam length in tiiAr so we can write u’ = mr(u) = ut v2 . . . on_-1 o, and 

w’ = mr(w) = wtw2. . . w,_~w, in the normal form described above. Since 7 E I;iAr 

(by (i)), there is x E A4:* 
- 

in amalgam normal form x =x1x2 + + . ~,,,a such that V’X = 7. 

Consider the sequence of amalgam normal forms ye, yt, . . . , y, corresponding to the 

sequence 

7, v’xt, . ..) u’x, . . .;c,_l, v’x=w’. 

Each element of the sequence is in k4r and so has amalgam length at least n. By the 

above corollary and induction, for each j = 0, 1,. . . , m, 

Yj = OlV2 " ' on-l~n,jVn+l,j ” ’ Vntk,,jbj, 

where un,j E Ai and ko = km = 0. Thus, Vi = wi for i = 1,2,. . _ , TI - 1 and U(U,X) = 

a(~,) = w,. By (ii) of the recursion hypothesis, 

= m(wn,A7m~(,),Ai(,)) 

= w,. 

For WEI@*, let M(w) be the smallest subset of M such that w E M(w)**. Part 

(iii) is proven by showing that the process of putting a word w into normal form does 

not increase M(w); i.e., M(mr(w)) CM(w). This suffices because if Au n EAT # 0 
then there is u E M$ such that B_4r = @AT. It then follows from part (ii) and the above 

claim that M(mr(w)) =M(mr(u)) GM(u) GM:*. Let w EM&*. The first step in prov- 

ing the claim is to show that M(a(w)) CM(w). Parse w into subwords w = wtwz . . . w,, 

such that M(wj) c T;(j), where i(j) E { 1,2} for each j = 1,2,. . . , n. Let wi = m(wl,Alz, 
Ai, ) and at= rn(wiM1 wl,A0,Ai(l,). By recursion hypothesis (iii), M(w’,) cM(wt) and 

M(u1)CM(wl)nMl2. Thus, M(w$ur)GM(wl) so altering w replacing w1 with w{ul 

does not increase M(w). Similarly, at the jth stage of converting w to a(w), we let 

W; =m(~~_lwj,Al2,Ai(j)) and aj =m(wi-’ aj_lwj,A0,Ai(j)). Then M(w;) cM(~~_lwj) 

and M(aj) C M(aj_twj) n A4 12. Thus, M(u(w)) CM(w). The second and final step 

is to show that if w =wtw2. e . w,u is in anf, then M(mr(w)) GM(w). Let WA = 

m(w,u,ATnr,,,,,Ai(n)). Then M(4) CM( w,u) and replacing w,u with WA will not in- 

crease M(w). If nt(wh,At2,Ai(n))=a, we replace w,_twA with wi_t =m(w,_lwA, 

AF~T,,,_,,,&_I)) without increasing M(w). 

TO prove (iv), let Li =m(M**,At2,Ai) and Ni =m(M**,Arnr,,Ai). By recursion 

hypothesis (iv), Li and Ni are regular. Let L- =Li - {E}. Then Li is regular. By the 

definition Of mr, 

so mr(M**) is a regular language over i+*. 0 
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3.2. A+ injects 

Given an Artin group A with canonical presentation, let A+ denote the monoid with 

the same presentation. Deligne has shown [8, Theorem 4.141 that the canonical map 

?L : A+ + A is injective in the case that A is of finite type. This holds for FC-type Artin 

groups as well. 

Theorem 4. Let A be an Artin group of FC-type. Then the canonical map II : A+ -+ A 

is injective. 

Proof. For two positive words u and v, let u -A+ v denote the statement that u and v 

represent the same element in the monoid A +. Let U denote the monoid equivalence 

class of the word u. Let u and v be positive words such that rc@) = ~$7’) and suppose 

x, y E F(s)+ are normal forms such that u N~+ x and U-A+ y. Then ~(3 = rc(3 = rc(;;) = 

n(y) and so x = y by the uniqueness property of the normal form. Hence, u -A+ x = 

y-A+ v. Thus, it suffices to show that any positive word can be brought into normal 

form by monoid equivalences. 

Suppose A is of finite type and T C S. Let w EM*. Let w’ = m(w, AT,A) and a = 
m(w’-‘w,Ao,A). Then by Eqs. (l)-(6), w’ E M’ and a E M,“. Therefore, by Deligne’s 

theorem, w NA+ w’a. 
Suppose Al and A2 are FC-type Artin groups with the same property; i.e., for 

i~{1,2}, for all TCTj, for all wcMi*, w NAt w’a, where w’ = m(w,A~,Ai) and a = 

m(w’-’ w,Ao,A,). Suppose A=Al *A,*A~. Let TICS. Let wEM*. Parse w=w~w~...w, 

as usual. By the recursion hypothesis, wi No;,, wial, where wi =m(w,Al~,Ai(l)) and 

al =m(w{-‘wl,A0,Ai(l~). Similarly, alw2-A;z, wiaz, etc., so we have W-A+ a(w) since 

every equivalence in AT is an equivalence in A +. So, without loss of generality, assume 

w = a(w) = ~1~2. . w,a. Let w,’ =m(w,a,Am~~,,,,Ai(,)) and k,, =m(w~-‘w,a,Am,Ai(,,). 

If n # 1 ad m(~&l~,Ai(,)) = E, let wi-* = m(~~-lw~,A~nr,,,_,,,Ai(n-1)) and k,-1 = 
m(w~T:w,-lw,‘,A~,Ai(n_l)), etc., according to the algorithm for finding mr(w) = 

WiW2”’ wk. Then w;+Q+ 8c,,wjw;+l for j=m,...,n - 1 and w,‘k,,wAt w,a. Let 
I@) 

k = a(k,k,+l . . . k,) = uluz . . . u/b. If e = 0, let k’ = m(k,Ao,A,). Otherwise, let 

k’=u,u2... u~-~u~, where zk $ = m(zqb,Ag,Ai(p)). Note that ~>#a. Then w-A+ mr(w)k’. 

Therefore, the desired property holds for A as well. Taking T = 0 yields that w and 

its normal form represent the same element of A+. Cl 

3.3. Asynchronous automaticity 

For paths u and v : [0, co) +X in a geodesic metric space X and a constant k > 0, we 
say that u and v are (synchronous) k-fellow travellers if the uniform distance between 

u and v is bounded by k; i.e., if dx(u(t), v(t)) 5 k, for all t > 0. Let u & v denote that u 

and v are k-fellow travellers. We say that u and v are asynchronous k-fellow travellers, 
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denoted u k v, if there are unbounded nondecreasing functions 4, + : [0, co) + [0, co) 

such that .4&v+. 

The definition of an asynchronously automatic group is long and will not be given 

here. The reader is referred to [2]. The following fact will be used to show that FC-type 

Artin groups are asynchronously automatic (see [2, Theorem 7.3, Section II]), Let G 

be a group, M a set of semigroup generators for G, and r = T(G,M) the Cayley graph. 

For a word w over S U S-l, the convention is to let w also represent the corresponding 

continuous path w : [0, IX) -+ r from the identity to W which is parameterized by arc 

length on [O,I I] d w an constant on [/WI, 00). Suppose L is a regular language over M that 

maps finite-to-one onto G under the canonical map and suppose there is a constant k 

such that for all u, v E L, p EM, if ii = @ then u A v. Then (M, L) is an asynchronously 

automatic structure for G. 

Let A be a finite-type Artin group. For w E Mf*, let Y(W) denote the rnf of w. 

Recall that if w is positive, the rnf is the rmd. It is shown in [S] that r(M**) is a 

biautomatic normal form for A. Let K be a bidirectional fellow travelling constant for 

this normal form; that is, let K be a positive real number such that for any rnf w and 

any GEM*‘, ow & r(~w) and WC 5 ~(wcr). Then the language of coset representatives 

for finite-type Artin groups satisfies the following left fellow traveller property. 

Lemma 13. Let A be a jinite-type Artin group, T c S, c EM, and XE A such 

that mr(x) =x. Then for any E E { 1, -l}, there is q E MT U { 1) such that (i) cr&x = 

mr(@x)q& and (ii) c+x*~mr(&x)$. 

Proof. Part (i) is first proven for E = 1. Let a and b be the rmds in M* such that 

ab-’ is the rnf of x. Then by Eqs. (l)-(6) with a-al and b=bt, aI, A”,b, for all - 

n > 0. By Lemma 3, aa A, A”,b EM U {l}, for all n > 0. Let J be the stable range of 

aa& A”,b. Let N E J and let g = oa A, Ayb. Let p = maxmin,(AFb). Then by Lemma 2, 

,u=maxmin,(drb). Since gEMU{l}, we have gll,p. Thus, J={n~N:n>l} and 

we may take N = 1. Also note that b Al A? = 1 so ATb Ap A? = AT, for m 2 1. Now 

find mT(ox) according to Eqs. (l)-(6) with oa in place of a. 

g=oaA,ATbEMU{l}, 

al = sag-‘, 

b, = ATbg-‘, 

h = bl A/ A;, 

b2 = h-lb], 

mT(oab-‘) = alb,‘. 

Thus, 

mT(ax)=aab-‘Ar’h. 
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Since bl de ATb, 

h=b,ArA’;!~ArbAeA’;=Adr, 

Taking q = h-‘AT gives part (i) for E = 1. To show part (i) for E = - 1, let y = mr 

(c-lx). By the above argument, there is q E A4 U {l} such that mT(ay) = ayq-‘. Thus, 

mT(~-‘x) = mT(y) = y 

=0 -10yY/-*v] 

= e-‘mT(ey)y 

= a-'mT(x)v- 

By the definition of K, 

Thus, part (ii) follows from the triangle inequality and part (i). 0 

The left fellow travelling property for the language of special cosets extends asyn- 

chronously to all Artin groups of FC-type via the following lemma (Fig. 2). 

Lemma 14. Let G be a group with jinite generating set S. Let u = 241242 ’ . . u,, v = 

VlV2 . . . v,,, and ho, hl,. . . , h, be words over S US-’ such that 
~ _ 

(a) hi-lui = vihi, 

(b) hi_lui k vihi, for i = 1,. . . n, and 

(c) [hii I/,for i=O,l,..., n. 
-- 

Then hou = vh, and hou kee vh,. 

Proof. For i= 1,2,... , n, let $i and $i be the parameterizations such that hi-lui4i & 

vihi$i. Let p’(t) be the (discontinuous) path that traverses haul at speed 41, jumps 

to q and traverses Fhlu2 at speed 42, and so on, ending at hou having traversed 

211212. . . v,_ 1 h,_lu,. See Fig. 2. Similarly, define q’ to be the path that traverses v1 hl, 

v1v2h2, . . ., v1v2. . . on_1 v,h, in order according to their respective parameterizations $i. 

Modify p’ and q’ by having p’ wait for q’ or vice versa at ur u2 . . . ui so that both 

paths jump from that point to vt 212 . . . vi at the same time for i = 1,2,. . . , n - 1. Let p 

be the path along hou which coincides with p’ except that p waits at ur u2 . . . ui while 

p’ traverses vt v2 . . . vih;. Let q be the path along vh, which coincides with q’ except 

that q waits at vtv2 . . . Vi while q’ traverses ~1~2. . . vihi. Then for any t 2 0, 

d(p(t),q(t)) 5 d(p(t)> p’(t)) + d(p’(t),q’(t)) + d(q’(t),q(t)) 5 e + k + e. •I 

Lemma 15. For any FC-type Artin group A, there is a constant k>O such that for 

any TGS, any WEA@*, and any GEM*‘, there is hEM:’ U (1) such that 

(i) amr(w) = mT(aw)h and (ii) g&W) kmT(cw)h. 
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“1 “” 

Fig. 2. Concatenating asynchronously fellow travelling paths. 
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Proof. If A is of finite type, the lemma follows from Lemma 13. Suppose A = Ai * A2 

is a special amalgam of ISA groups and Ai and A2 satisfy (i) and (ii). Let ki and 

k2 be the respective asynchronous fellow travelling constants. Suppose, without loss 

of generality, that w = q(w) and write w = wiw2 . . . w, in normal form. We consider 

separately the cases c E M,(i) and G # Mi(i ). If o E Mi(i), condition (i) yields 

- 
ow=rJwiw2”‘wn 

= w;hlw*. . . w, 

= w; w;h2 ’ ’ . w,, 

=: 

=w;w;... w,‘hn, 

where hi E M;’ for 1 < i <n and h, E 44:‘. Condition (ii) yields owl ‘z’wi hl in T(Ai( 11, 

M(l)), and hi-lwj 
k,(j) 
N $hj in T(Ai(j),Mi(i,) for 1 <j 5 n. Since T(Ai,Mi) may be re- 

garded as a subgraph of r(A,M), if u h u in T(Ai,Mi), then u A v in T(A,M). Part 

(ii) in this case follows from Lemma 14 with k = max{ki, k2) + 2. If (T $Mi(i), putting 

(TW into normal form yields 

- 
ow=awlw2~.-w, 

= wpw~w2 . . . W” 

= w;w;h,wz . . . w, 

= w;w; w;h2 . . . w, 

=: 

= w;w;w; . . . w;h,. 

Since OEM*‘, we have Iw&I,ltY < 1. Let WO=E. Then ~wa=w@ and owa 
2 
NW&d. 

Thus, Lemma 14 yields (ii) with k = max{ki,k2,2} + 2. This choice of k also works 

in the previous case. 0 
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Theorem 5. Let A be an FC-type Artin group and let A4 be the set of minimals of A. 
Let L = rev{mp(w) : w E I@*}. Then (A4, L) is an asynchronously automatic structure 

for A. 

Proof. By Theorem 2(iv), L is the reverse of a regular language and is therefore 

regular. By Theorem 2(i), the natural map L +A is one-to-one. By Lemma 15(ii), 

for any 0 E A@‘, oms(w)kkl mg(ow) so rev(mO(w))akkl rev(ms(aw)). Thus, by the 

characterization of asynchronously automatic given above, (ML) is an asynchronously 

automatic structure for A. 0 
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